Kamis, 27 Desember 2012


Uji Normalitas

Uji normalitas digunakan untuk mengetahui apakah populasi data berdistribusi normal atau tidak. Uji ini biasanya digunakan untuk mengukur data berskala ordinal, interval, ataupun rasio. Jika analisis menggunakan metode parametrik, maka persyaratan normalitas harus terpenuhi yaitu data berasal dari distribusi yang normal. Jika data tidak berdistribusi normal, atau jumlah sampel sedikit dan jenis data adalah nominal atau ordinal maka metode yang digunakan adalah statistik non parametrik. Dalam pembahasan ini akan digunakan uji One Sample Kolmogorov-Smirnov dengan menggunakan taraf signifikansi 0,05. Data dinyatakan berdistribusi normal jika signifikansi lebih besar dari 5% atau 0,05.

Uji Homogenitas
Uji homogenitas digunakan untuk mengetahui apakah beberapa varian populasi adalah sama atau tidak. Uji ini dilakukan sebagai prasyarat dalam analisis independent sample t test dan ANOVA. Asumsi yang mendasari dalam analisis varian (ANOVA) adalah bahwa varian dari populasi adalah sama. Sebagai kriteria pengujian, jika nilai signifikansi lebih dari 0,05 maka dapat dikatakan bahwa varian dari dua atau lebih kelompok data adalah sama.

Uji Linieritas
Uji linearitas bertujuan untuk mengetahui apakah dua variabel mempunyai hubungan yang linear atau tidak secara signifikan. Uji ini biasanya digunakan sebagai prasyarat dalam analisis korelasi atau regresi linear. Pengujian pada SPSS dengan menggunakan Test for Linearity dengan pada taraf signifikansi 0,05. Dua variabel dikatakan mempunyai hubungan yang linear bila signifikansi (Linearity) kurang dari 0,05.


Analisis regresi linier sederhana adalah hubungan secara linear antara satu variabel independen (X) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah positif atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan.. Data yang digunakan biasanya berskala interval atau rasio.
Rumus regresi linear sederhana sebagi berikut:
Y’ = a + bX
Keterangan:
Y’ = Variabel dependen (nilai yang diprediksikan)
X   = Variabel independen
a    = Konstanta (nilai Y’ apabila X = 0)
         b    = Koefisien regresi (nilai peningkatan ataupun penurunan)


 Uji Koefisien Regresi Sederhana (Uji t)
Uji ini digunakan untuk mengetahui apakah variabel independen (X) berpengaruh secara signifikan terhadap variabel dependen (Y). Signifikan berarti pengaruh yang terjadi dapat berlaku untuk populasi (dapat digeneralisasikan).

sumber : http://duwiconsultant.blogspot.com
         Uji 1 sampel kolmogorov-Smirnov digunakan untuk mengetahui apakah distribusi nilai-nilai sampel yang teramati sesuai dengan distribusi teoritis tertentu (normal, uniform, poisson, eksponensial).  Uji Kolmogorov-Smirnov beranggapan bahwa distribusi variabel yang sedang diuji bersifat kontinu dan pengambilan sampel secara acak. Dengan demikian uji ini hanya dapat digunakan, bila variabel diukur paling tidak dalam skala interval.
Prinsip dari uji Kolmogorov–Smirnov adalah menghitung selisih absolut antara fungsi distribusi frekuensi kumulatif sampel dan fungsi distribusi frekuensi kumulatif teoritis pada masing-masing interval kelas. 

  • Hipotesis yang diuji dinyatakan sebagai berikut (dua sisi):
         H0: Data mengikuti sebaran normal
        H1: Data tidak mengikuti sebaran nomal
  • Statistik Uji
  • Taraf nyata = α
  • Wilayah Kritis
   Tolak Ho jika D > D tabel (α,n)

Selasa, 25 Desember 2012

Pada kesempatan kali ini saya akan mempost tabel distribusi probabilitas normal baku, tabel binominal dan tabel tabel lainnya, bagi yang membutuhkan silahkan download melalui link dibawah ini :

1. Tabel Distribusi Probabilitas
2. Tabel Binomial
3. Tabel Kolmogorov-Smirnov

Analisis varians (analysis of varianceANOVA) adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Dalam literatur Indonesia metode ini dikenal dengan berbagai nama lain, seperti analisis ragamsidik ragam, dan analisis variansi. Ia merupakan pengembangan dari masalah Behrens-Fisher, sehingga uji-F juga dipakai dalam pengambilan keputusan. Analisis varians pertama kali diperkenalkan oleh Sir Ronald Fisher, bapak statistika modern. Dalam praktik, analisis varians dapat merupakan uji hipotesis (lebih sering dipakai) maupun pendugaan (estimation, khususnya di bidang genetika terapan).
Secara umum, analisis varians menguji dua varians (atau ragam) berdasarkan hipotesis nol bahwa kedua varians itu sama. Varians pertama adalah varians antarcontoh (among samples) dan varians kedua adalah varians di dalam masing-masing contoh (within samples). Dengan ide semacam ini, analisis varians dengan dua contoh akan memberikan hasil yang sama dengan uji-t untuk dua rerata (mean).
Supaya sahih (valid) dalam menafsirkan hasilnya, analisis varians menggantungkan diri pada empat asumsi yang harus dipenuhi dalam perancangan percobaan:
  1. Data berdistribusi normal, karena pengujiannya menggunakan uji F-Snedecor
  2. Varians atau ragamnya homogen, dikenal sebagai homoskedastisitas, karena hanya digunakan satu penduga (estimate) untuk varians dalam contoh
  3. Masing-masing contoh saling bebas, yang harus dapat diatur dengan perancangan percobaan yang tepat
  4. Komponen-komponen dalam modelnya bersifat aditif (saling menjumlah).
Analisis varians relatif mudah dimodifikasi dan dapat dikembangkan untuk berbagai bentuk percobaan yang lebih rumit. Selain itu, analisis ini juga masih memiliki keterkaitan dengan analisis regresi. Akibatnya, penggunaannya sangat luas di berbagai bidang, mulai dari eksperimen laboratorium hingga eksperimen periklanan, psikologi, dan kemasyarakatan.


untuk lebih jelasnya materi dapat didownload menggunakan link dibawah ini :
http://www.4shared.com/file/LdEKtol1/analisis-variansi_satu_arah.html

Sabtu, 22 Desember 2012

Statistik adalah sekumpulan prosedur untuk mengumpulkan, mengukur, mengklasifikasi, menghitung, menjelaskan, mensintesis, menganalisis, dan menafsirkan data kuantitatif yang diperoleh secara sistematis. Secara garis besar, statistik dibagi menjadi dua komponen utama, yaitu Statistik Deskriptif dan Statistik inferensial
Statistik deskriptif menggunakan prosedur numerik dan grafis dalam meringkas gugus data dengan cara yang jelas dan dapat dimengerti, sementara Statistik inferensial menyediakan prosedur untuk menarik kesimpulan tentang populasi berdasarkan sampel yang kita amati. Statistik Deskriptif membantu kita untuk menyederhanakan data dalam jumlah besar dengan cara yang logis. Data yang banyak direduksi dan diringkas sehingga lebih sederhana dan lebih mudah diinterpretasi.


Terdapat dua metode dasar dalam statistik deskriptif, yaitu numerik dan grafis.
  • Pendekatan numerik dapat digunakan untuk menghitung nilai statistik dari sekumpulan data, seperti meandan standar deviasi. Statistik ini memberikan informasi tentang rata-rata dan informasi rinci tentang distribusi data.
  • Metode grafis lebih sesuai daripada metode numerik untuk mengidentifikasi pola-pola tertentu dalam data, dilain pihak, pendekatan numerik lebih tepat dan objektif. Dengan demikian, pendekatan numerik dan grafis satu sama lain saling melengkapi, sehingga sangatlah bijaksana apabila kita menggunakan kedua metode tersebut secara bersamaan.
Terdapat tiga karakteristik utama dari variabel tunggal:
  • Distribusi data (distribusi frekuensi)
  • Ukuran pemusatan/tendensi sentral (Central Tendency)
  • Ukuran penyebaran (Dispersion)

Distribusi Data

Pengaturan, penyusunan, dan peringkasan data dengan membuat tabel seringkali membantu, terutama pada saat kita bekerja dengan sejumlah data yang besar. Tabel tersebut berisi daftar nilai data yang mungkin berbeda (baik data tunggal ataupun data yang sudah dikelompok-kelompokan) beserta nilai frekuensinya. Frekuensi menunjukkan banyaknya kejadian/kemunculan nilai data dengan kategori tertentu. Distribusi data yang sudah diatur tersebut sering disebut dengan distribusi frekuensi. Dengan demikian, Distribusi frekuensi didefinisikan sebagai daftar sebaran data (baik data tunggal maupun data kelompok), yang disertai dengan nilai frekuensinya. Data dikelompokkan ke dalam beberapa kelas sehingga ciri-ciri penting data tersebut dapat segera terlihat.
Distribusi frekuensi yang paling sederhana adalah distribusi yang menampilkan daftar setiap nilai dari variabel yang disertai dengan nilai frekuensinya. Distribusi frekuensi dapat digambarkan dalam dua cara, yaitu sebagai tabelatau sebagai grafik. Distribusi juga dapat ditampilkan dengan menggunakan nilai persentase. Penyajian distribusi dalam bentuk grafik lebih mempermudah dalam melihat karakteristik dan kecenderungan tertentu dari sekumpulan data. Grafik data kuantitatif meliputi Histogram, Poligon Frekuensi dll, sedangkan grafik untuk data kualitatif meliputi Bar Chart, Pie Chart dll.
Distribusi frekuensi akan memudahkan kita dalam melihat pola dalam data, namun demikian, kita akan kehilangan informasi dari nilai individunya.

Bentuk Distribusi

Aspek penting dari “deskripsi” suatu variabel adalah bentuk distribusinya, yang menunjukkan frekuensi dari berbagai selang nilai variabel. Biasanya, seorang peneliti yang tertarik pada seberapa baik distribusi dapat diperkirakan oleh distribusi normal. Statistik deskriptif sederhana dapat memberikan beberapa informasi yang relevan dengan masalah ini. Sebagai contoh, jika skewness (kemiringan), yang mengukur kesimetrisan distribusi data, tidak sama dengan 0, maka distribusi dikatakan tidak simetris (a simetris), dan apabila skewness bernilai 0 berarti data tersebut berdistribusi normal (simetris). Jika kurtosis (keruncingan), yang mengukur keruncingan distribusi data, tidak sama dengan 0, maka distribusi data mungkin lebih datar atau lebih runcing dibandingkan dengan distribusi normal. Nilai kurtosis dari distribusi normal adalah 0.
Informasi yang lebih akurat dapat diperoleh dengan menggunakan salah satu uji normalitas yaitu untuk menentukan peluang apakah sampel berasal dari pengamatan populasi yang berdistribusi normal ataukah tidak (misalnya, uji Kolmogorov-Smirnov, atau uji Shapiro-Wilks’W) . Namun, di antara uji formal tersebut tidak ada satu pun yang dapat sepenuhnya menggantikan pemeriksaan data secara visual dengan menggunakan cara grafis, seperti histogram (grafik yang menunjukkan distribusi frekuensi dari variabel).
Grafik (Histogram, misalnya) memungkinkan kita untuk mengevaluasi normalitas dari distribusi empiris karena pada histogram tersebut disertakan juga overlay kurva normalnya. Hal ini juga memungkinkan kita untuk memeriksa berbagai aspek dari bentuk distribusi data secara kualitatif. Sebagai contoh, distribusi dapat bimodal (memiliki 2 puncak) ataupun multimodal (lebih dari 2 puncak). Hal ini menunjukkan bahwa sampel tidak homogen dan unsur-unsurnya berasal dari dua populasi yang berbeda.

Ukuran Pemusatan (Central Tendency)

Salah satu aspek yang paling penting untuk menggambarkan distribusi data adalah nilai pusat pengamatan. Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran tendensi sentral.
Terdapat tiga jenis ukuran tendensi sentral yang sering digunakan, yaitu:
  • Mean
  • Median
  • Mode
Rata-rata hitung atau arithmetic mean atau sering disebut dengan istilah mean saja merupakan metode yang paling banyak digunakan untuk menggambarkan ukuran tendensi sentral. Mean dihitung dengan menjumlahkan semua nilai data pengamatan kemudian dibagi dengan banyaknya data. Mean dipengaruhi oleh nilai ekstrem.
Median adalah nilai yang membagi himpunan pengamatan menjadi dua bagian yang sama besar, 50% dari pengamatan terletak di bawah median dan 50% lagi terletak di atas median. Median dari n pengukuran atau pengamatan x1, x2 ,…, xn adalah nilai pengamatan yang terletak di tengah gugus data setelah data tersebut diurutkan. Apabila banyaknya pengamatan (n) ganjil, median terletak tepat ditengah gugus data, sedangkan bila ngenap, median diperoleh dengan cara interpolasi yaitu rata-rata dari dua data yang berada di tengah gugus data.Median tidak dipengaruhi oleh nilai ekstrem.
Mode adalah data yang paling sering muncul/terjadi. Untuk menentukan modus, pertama susun data dalam urutan meningkat atau sebaliknya, kemudian hitung frekuensinya. Nilai yang frekuensinya paling besar (sering muncul) adalah modus. Modus digunakan baik untuk tipe data numerik atau pun data kategoris. Modus tidak dipengaruhi oleh nilai ekstrem.

Karakteristik penting untuk ukuran pusat yang baik

Ukuran nilai pusat (average) merupakan nilai pewakil dari suatu distribusi data, sehingga harus memiliki sifat-sifat berikut:
  • Harus mempertimbangkan semua gugus data
  • Tidak boleh terpengaruh oleh nilai-nilai ekstrim.
  • Harus stabil dari sampel ke sampel.
  • Harus mampu digunakan untuk analisis statistik lebih lanjut.
Dari beberapa ukuran nilai pusat, Mean hampir memenuhi semua persyaratan tersebut, kecuali syarat pada point kedua, rata-rata dipengaruhi oleh nilai ekstrem. Sebagai contoh, jika item adalah 2; 4; 5; 6; 6; 6; 7; 7; 8; 9 maka mean, median dan modus yang semua sama dengan 6. Jika nilai terakhir adalah 90 bukan 9, rata-rata akan menjadi 14.10, sedangkan median dan modus yang tidak berubah. Meskipun median dan modus lebih baik dalam hal ini, namun mereka tidak memenuhi persyaratan lainnya. Oleh karena itu Mean merupakan ukuran nilai pusat yang terbaik dan sering digunakan dalam analisis statistik.

Kapan kita menggunakan nilai pusat yang berbeda?

Nilai ukuran pusat yang tepat untuk digunakan tergantung pada sifat data, sifat distribusi frekuensi dan tujuan. Jika data kualitatif, hanya modus yang dapat digunakan. Sebagai contoh, apabila kita tertarik untuk mengetahui jenis tanah yang khas di suatu lokasi, atau pola tanam di suatu daerah, kita dapat menggunakan modus. Di sisi lain, jika data bersifat kuantitatif, kita dapat menggunakan salah satu dari ukuran nilai pusat tersebut.
Jika data bersifat kuantitatif, kita harus mempertimbangkan sifat distribusi frekuensi gugus data tersebut.
  • Bila distribusi frekuensi data tidak normal (tidak simetris), median atau modus merupakan ukuran pusat yang tepat.
  • Apabila terdapat nilai-nilai ekstrim, baik kecil atau besar, lebih tepat menggunakan median atau modus.
  • Apabila distribusi data normal (simetris), semua ukuran nilai pusat, baik mean, median, atau modus dapat digunakan. Namun, mean lebih sering digunakan dibanding yang lainnya karena lebih memenuhi persyaratan untuk ukuran pusat yang baik.
  • Ketika kita berhadapan dengan laju, kecepatan dan harga lebih tepat menggunakan rata-rata harmonik.
Jika kita tertarik pada perubahan relatif, seperti dalam kasus pertumbuhan bakteri, pembelahan sel dan sebagainya, rata-rata geometrik adalah rata-rata yang paling tepat.

Minggu, 25 November 2012

Konsep dasar
Dalam mengaplikasikan statistika terhadap permasalahan sains, industri, atau sosial, pertama-tama dimulai dari mempelajari populasi. Makna populasi dalam statistika dapat berarti populasi benda hidup, benda mati, ataupun benda abstrak. Populasi juga dapat berupa pengukuran sebuah proses dalam waktu yang berbeda-beda, yakni dikenal dengan istilah deret waktu. Melakukan pendataan (pengumpulan data) seluruh populasi dinamakan sensus. Sebuah sensus tentu memerlukan waktu dan biaya yang tinggi. Untuk itu, dalam statistika seringkali dilakukan pengambilan sampel (sampling), yakni sebagian kecil dari populasi, yang dapat mewakili seluruh populasi. Analisis data dari sampel nantinya digunakan untuk menggeneralisasi seluruh populasi. Jika sampel yang diambil cukup representatif, inferensial (pengambilan keputusan) dan simpulan yang dibuat dari sampel dapat digunakan untuk menggambarkan populasi secara keseluruhan. Metode statistika tentang bagaimana cara mengambil sampel yang tepat dinamakan teknik sampling. Analisis statistik banyak menggunakan probabilitas sebagai konsep dasarnya hal terlihat banyak digunakannya uji statistika yang mengambil dasar pada sebaran peluang. Sedangkanmatematika statistika merupakan cabang dari matematika terapan yang menggunakan teori probabilitas dan analisis matematika untuk mendapatkan dasar-dasar teori statistika. Ada dua macam statistika, yaitu statistika deskriptif dan statistika inferensial. Statistika deskriptif berkenaan dengan deskripsi data, misalnya dari menghitung rata-rata dan varians dari data mentah; mendeksripsikan menggunakan tabel-tabel atau grafik sehingga data mentah lebih mudah “dibaca” dan lebih bermakna. Sedangkan statistika inferensial lebih dari itu, misalnya melakukan pengujian hipotesis, melakukan prediksi observasi masa depan, atau membuat model regresi. 
  1. Statistika deskriptif berkenaan dengan bagaimana data dapat digambarkan dideskripsikan) atau disimpulkan, baik secara numerik (misalnya menghitung rata-rata dan deviasi standar) atau secara grafis (dalam bentuk tabel atau grafik), untuk mendapatkan gambaran sekilas mengenai data tersebut, sehingga lebih mudah dibaca dan bermakna. 
  2. Statistika inferensial berkenaan dengan permodelan data dan melakukan pengambilan keputusan berdasarkan analisis data, misalnya melakukan pengujian hipotesis, melakukan estimasi pengamatan masa mendatang (estimasi atau prediksi), membuat permodelan hubungan (korelasi, regresi, ANOVA, deret waktu), dan sebagainya. 


Metode Statistika 
Terdapat dua jenis utama penelitian: eksperimen dan survei. 
Keduanya sama-sama mendalami pengaruh perubahan pada peubah penjelas dan perilaku peubah respon akibat perubahan itu. Beda keduanya terletak pada bagaimana kajiannya dilakukan. Suatu eksperimen melibatkan pengukuran terhadap sistem yang dikaji, memberi perlakuan terhadap sistem, dan kemudian melakukan pengukuran (lagi) dengan cara yang sama terhadap sistem yang telah diperlakukan untuk mengetahui apakah perlakuan mengubah nilai pengukuran. Bisa juga perlakuan diberikan secara simultan dan pengaruhnya diukur dalam waktu yang bersamaan pula. Metode statistika yang berkaitan dengan pelaksanaan suatu eksperimen dipelajari dalam rancangan percobaan (desain eksperimen). Dalam survey, di sisi lain, tidak dilakukan manipulasi terhadap sistem yang dikaji. Data dikumpulkan dan hubungan (korelasi) antara berbagai peubah diselidiki untuk memberi gambaran terhadap objek penelitian. Teknik-teknik survai dipelajari dalam metode survei. Penelitian tipe eksperimen banyak dilakukan pada ilmu-ilmu rekayasa, misalnya teknik, ilmu pangan, agronomi, farmasi, pemasaran (marketing), dan psikologi eksperimen. Penelitian tipe observasi paling sering dilakukan di bidang ilmu-ilmu sosial atau berkaitan dengan perilaku sehari-hari, misalnya ekonomi, psikologi dan pedagogi, kedokteran masyarakat, dan industri.

Tipe pengukuran 
Ada empat tipe skala pengukuran yang digunakan di dalam statistika, yaitu nominal, ordinal, interval, dan rasio. Keempat skala pengukuran tersebut memiliki tingkat penggunaan yang berbeda dalam pengolahan statistiknya. 
  1. Skala nominal hanya bisa membedakan sesuatu yang bersifat kualitatif atau kategoris, misalnya jenis kelamin, agama, dan warna kulit.
  2. Skala ordinal selain membedakan sesuatu juga menunjukkan tingkatan, misalnya pendidikan dan tingkat kepuasan pengguna. 
  3. Skala interval berupa angka kuantitatif namun tidak memiliki nilai nol mutlak sehingga titik nol dapat digeser sesuka orang yang mengukur, misalnya tahun dan suhu dalam Celcius. 
  4. Skala rasio berupa angka kuantitatif yang memiliki nilai nol mutlak dan tidak dapat digeser sesukanya, misalnya adalah suhu dalam Kelvin, panjang, dan massa. 

Teknik-teknik statistika
Beberapa pengujian dan prosedur yang banyak digunakan dalam penelitian antara lain: 
  1. Analisis regresi dan korelasi 
  2. Analisis varians (ANOVA) 
  3. khi-kuadrat 
  4. Uji t-Student
Statistika Terapan

Bebebarapa ilmu pengetahuan menggunakan statistika terapan sehingga mereka memiliki terminologi yang khusus. Disiplin ilmu tersebut antara lain: 
  1. Aktuaria (penerapan statistika dalam bidang asuransi) 
  2. Biostatistika atau biometrika (penerapan statistika dalam ilmu biologi) 
  3. Statistika bisnis 
  4. Ekonometrika 
  5. Psikometrika 
  6. Statistika sosial 
  7. Statistika teknik atau teknometrika 
  8. Fisika statistik 
  9. Demografi 
  10. Eksplorasi data (pengenalan pola) 
  11. Literasi statistik 
  12. Analisis proses dan kemometrika (untuk analisis data kimia analis dan teknik kimia) 
 Statistika memberikan alat analisis data bagi berbagai bidang ilmu. Kegunaannya bermacam-macam: mempelajari keragaman akibat pengukuran, mengendalikan proses, merumuskan informasi dari data, dan membantu pengambilan keputusan berdasarkan data. Statistika, karena sifatnya yang objektif, sering kali merupakan satu-satunya alat yang bisa diandalkan untuk keperluan-keperluan di atas.
A.PENGERTIAN STATISTIK 
Sudjana (2004, dalam Riduwan dan Sunarto, 2007) mendefinisikan statistika sebagai pengetahuan yang berhubungan dengan cara-cara pengumpulan fakta, pengolahan serta pembuatan keputusan yang cukup beralasan berdasarkan fakta dan analisa yang dilakukan. Sementara statistic dipakai untuk menyatakan kumpulan fakta, umumnya berbentuk angka yang disusun dalam tabel atau diagram yang melukiskan atau menggambarkan suatu persoalan. Lebih lanjut Sudjana (2004, dalam Riduwan dan Sunarto, 2007) menyatakan statistika adalah ilmu terdiri dari teori dan metode yang merupakan cabang dari matematika terapan dan membicarakan tentang : bagaimana mengumpulkan data, bagaimana meringkas data, mengolah dan menyajikan data, bagaimana menarik kesimpulan dari hasil analisis, bagaimana menentukan keputusan dalam batas-batas resiko tertentu berdasarkan strategi yang ada. Singgih Santoso (2002) menyatakan, pada prinsipnya statistic diartikan sebagai kegiatan untuk mengumpulkan data, meringkas/menyajikan data, menganalisa data dengan metode tertentu, dan menginterpretasikan hasil analisis tersebut. Dalam kaitannya untuk menyelesaikan masalah, pendekatan statistic terbagi dua yaitu pendekatan statistic dalam arti sempit dan luas. Dalam arti sempit (statistic deskriptif), statistika yang hanya mendeskripsikan tentang data yang dijadikan dalam bentuk tabel, diagram, pengukuran rata-rata, simpangan baku, dan seterusnya tanpa perlu menggunakan signifikansi atau tidak bermaksud membuat generalisasi. Sementara dalam arti luas (statistic inferensi/induktif) adalah alat pengumpul data, pengolah data, menarik kesimpulan, membuat tindakan berdasarkan analisis data yang dikumpulkan dan hasilnya dimanfaatkan / digeneralisasi untuk populasi. Bidang keilmuan statistika adalah sekumpulan metode untuk memperoleh dan menganalisa data dalam pengambilan suatu kesimpulan. Meski merupakan cabang ilmu matematika, statistika memiliki perbedaan mendasar pada logikanya. Jika matematika menggunakan logika deduktif, sementara statistic menggunakan logika induktif. Logika statistika, dengan demikian sering disebut dengan logika induktif yang tidak memberikan kepastian namun member tingkat peluang bahwa untuk premis-premis tertentu dapat ditarik kesimpulan, dan kesimpulannya mungkin benar mungkin juga tidak.
Langkah yang ditempuh dalam logika statistika adalah : 
  1. Observasi dan eksperimen 
  2. Munculnya hipotesis ilmiah 
  3. Verifikasi dan pengukuhan dan berakhir pada 
  4. Sebuah teori dan hokum ilmiah (Cecep Sumarna, 2004:98) 
B. LANDASAN KERJA STATISTIK
Menurut Sutrisno Hadi (dalam Riduwan dan Sunarto, 2007) ada tiga jenis landasan kerja statistic meliputi : 
  1. Variasi. Didasarkan atas kenyataan bahwa seorang peneliti atau penyelidik selalu menghadapi persoalan dan gejala yang bermacam-macam (variasi) baik dalam bentuk tingkatan dan jenisnya
  2. Reduksi, Hanya sebagian dan seluruh kejadian yang berhak diteliti (sampling) 
  3. Generalisasi. Sekalipun penelitian dilakukan terhadap sebagain atau seluruh kejadian yang hendak diteliti, namun kesimpulan dan penelitian ini akan diperuntukkan bagi keseluruhan kejadian atau gejala yang diambil. 
C. KARAKTERISTIK STATISTIK 
Riduwan dan Sunarto (2007:5-6) menjelaskan beberapa karakteristik pokok statistic meliputi : 
  • Statistik bekerja dengan angka Pertama, angka statistic sebagai jumlah atau frekuensi dan angka statistic sebagai nilai atau harga. Pengertian ini mengandung arti bahwa data statistic adalah data kuantitatif. Misalnya, jumlah kecelakaan yang terjadi dalam satu tahun, jumlah tersangka koruptor yang diproses di KPK tahun 2009, jumlah siswa SD Jakarta tahun 2009, Jumlah siswa yang lulus UAN 2010, dan seterusnya. Angka-angka ini menyatakan nilai atau harga sesuatu Kedua, Angka statistic sebagai nilai mempunyai arti data kualitatif yang diwujudkan dalam angka. Contoh : nilai IQ, mutu pengajaran guru, metode pengajaran, nilai kepuasan, dan seterusnya, 
  • Statistik bersifat Objektf Statistik bekerja dengan angka sehingga mempunyai sifat objektif, artinya angka statistic dapat digunakan sebagai alat pencari fakta, pengungkapan kenyataan yang ada dan memberikan keterangan yang benar, kemudian menentukan kebijakan sesuai fakta dan temuannya yang diungkapkan apa adanya.
  • Statistik bersifat Universal Statistik tidak hanya digunakan dalam salah satu disiplin ilmu saja, tetapi dapat digunakan secara umum dalam berbagai bentuk disiplin ilmu pengetahuan dengan penuh keyakinan. 
D. MANFAAT DAN KEGUNAAN STATISTIK
Statistik dapat digunakan sebagai alat (Riduwan dan Sunarto, 2007) :
  1. Komunikasi. Adalah sebagai penghubungan beberapa pihak yang menghasilkan data statistic atau berupa analisis statistic sehingga beberapa pihak tersebut akan dapat mengambil keputusan melalui informasi tersebut. 
  2. Deskripsi. Merupakan penyajian data dan mengilustrasikan data, misalnya mengukur tingkat kelulusan siswa, laporan keuangan, tingkat inflasi, jumlah penduduk, dan seterusnya 
  3. Regresi. Adalah meramalkan pengaruh data yang satu dengan data yang lainnya dan untuk menghadapi gejala-gejala yang akan datang 
  4. Korelasi. Untuk mencari kuatnya atau besarnya hubungan data dalam suatu peneltian 
  5. Komparasi yaitu membandingkan data dua kelompok atau lebih. 

Dirangkum dari :
Cecep Sumarna. 2004. Filsafat Ilmu. Dari hakikat menuju nilai. Bandung : Pustaka Bani Quraisy 
Riduwan dan Sunarto. 2007. Pengantar Statistika. Bandung : Alvabeta 
Singgih Santoso. 2002. Statistik Parametrik. Jakarta : Elexmedia Komputindo